skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Kai-Hung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spontaneous oxidation of compounds containing diverse X=Y moieties (e.g., sulfonamides, ketones, esters, sulfones) occurs readily in organic-solvent microdroplets. This surprising phenomenon is proposed to be driven by the generation of an intermediate species [M+H 2 O] +· : a covalent adduct of water radical cation (H 2 O +· ) with the reactant molecule (M). The adduct is observed in the positive ion mass spectrum while its formation in the interfacial region of the microdroplet (i.e., at the air-droplet interface) is indicated by the strong dependence of the oxidation product formation on the spray distance (which reflects the droplet size and consequently the surface-to-volume ratio) and the solvent composition. Importantly, based on the screening of a ca. 21,000-compound library and the detailed consideration of six functional groups, the formation of a molecular adduct with the water radical cation is a significant route to ionization in positive ion mode electrospray, where it is favored in those compounds with X=Y moieties which lack basic groups. A set of model monofunctional systems was studied and in one case, benzyl benzoate, evidence was found for oxidation driven by hydroxyl radical adduct formation followed by protonation in addition to the dominant water radical cation addition process. Significant implications of molecular ionization by water radical cations for oxidation processes in atmospheric aerosols, analytical mass spectrometry and small-scale synthesis are noted. 
    more » « less
  2. Systematic screening of accelerated chemical reactions at solid/solution interfaces has been carried out in high-throughput fashion using desorption electrospray ionization mass spectrometry and it provides evidence that glass surfaces accelerate various base-catalyzed chemical reactions. The reaction types include elimination, solvolysis, condensation and oxidation, whether or not the substrates are pre-charged. In a detailed mechanistic study, we provide evidence using nanoESI showing that glass surfaces can act as strong bases and convert protic solvents into their conjugate bases which then act as bases/nucleophiles when participating in chemical reactions. In aprotic solvents such as acetonitrile, glass surfaces act as ‘green’ heterogeneous catalysts that can be recovered and reused after simple rinsing. Besides their use in organic reaction catalysis, glass surfaces are also found to act as degradation reagents for phospholipids with increasing extents of degradation occurring at low concentrations. This finding suggests that the storage of base/nucleophile-labile compounds or lipids in glass containers should be avoided. 
    more » « less
  3. null (Ed.)
    Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO 2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. 
    more » « less
  4. Abstract Late‐stage functionalization (LSF) of drug molecules is an approach to generate modified molecules that retain functional groups present in the active drugs. Here, we report a study that seeks to characterize the potential value of high‐throughput desorption electrospray ionization mass spectrometry (HT DESI‐MS) for small‐scale rapid LSF. In conventional route screening, HT‐based DESI‐MS provides contactless, rapid analysis, reliable and reproducible data, minimal sample requirement, and exceptional tolerance to high salt concentrations. Ezetimibe (E), an established hypertension drug, is targeted for modification by LSF. C−H alkenylation and azo‐click reactions are utilized to explore this approach to synthesis and analytical characterization. The effect of choice of reactant, stoichiometry, catalyst, and solvent are studied for both reactions using high throughput DESI‐MS experiments. Optimum conditions for the formation of LSF products are established with identification by tandem mass spectrometry (MS/MS). 
    more » « less
  5. Abstract Palladium‐catalyzed Suzuki‐Miyaura (SM) coupling is widely utilized in the construction of carbon‐carbon bonds. In this study, nanoelectrospray ionization mass spectrometry (nanoESI‐MS) is applied to simultaneously monitor precatalysts, catalytic intermediates, reagents, and products of the SM cross‐coupling reaction of 3‐Br‐5‐Ph‐pyridine and phenylboronic acid. A set of Pd cluster ions related to the monoligated Pd (0) active catalyst is detected, and its deconvoluted isotopic distribution reveals contributions from two neutral molecules. One is assigned to the generally accepted Pd(0) active catalyst, seen in MS as the protonated molecule, while the other is tentatively assigned to an oxidized catalyst which was found to increase as the reaction proceeds. Oxidative stress testing of a synthetic model catalyst 1,5‐cyclooctadiene Pd XPhos (COD−Pd‐XPhos) performed using FeCl3supported this assignment. The formation and conversion of the oxidative addition intermediate during the catalytic cycle was monitored to provide information on the progress of the transmetalation step. 
    more » « less